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We study the dynamics involved in a sparse random network model. We extend the standard mean-field
approximation for the dynamics of a random network by employing the path-integral approach. The result
indicates that the distribution of the variable is essentially identical to that obtained from globally coupled
oscillators with random Gaussian interaction. We present the results of a numerical simulation of the Kuramoto
transition in a random network, which is found to be consistent with this analysis.
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I. INTRODUCTION

Many systems in nature, such as food webs, metabolic
systems, coauthorship of papers, the worldwide web, and so
on, can be represented as complex networks �1–4�. Investi-
gations of real networks have shown that these networks
have topologies different from random networks. In particu-
lar, we have recognized that many networks have scale-free
degree distribution, P�k��k−�, where k is the degree of
nodes.

The dynamics involved in complex networks has become
an important aspect of the complex network studies in recent
times. This problem includes, for example, the spreading of
virus in the internet, synchronization of neurons in a brain,
change of populations in a food web. Recently, Pastor-
Satorras and Vespignani obtained unexpected results in this
regard �5�. They studied the spread of viruses in complex
networks and found that no threshold of infection rate exists
for the susceptible-infected-susceptible model in the random
scale-free network with ��3, if the size of the network N is
infinite. Though real networks such as the internet are finite-
size network, this result implies that a virus with a small
infection rate can spread over the whole network. We had
previously presented another remarkable example of the un-
usual dynamics involved in complex networks �6,7�. We
studied the Kuramoto synchronization in a random network
of oscillators and found that the critical coupling for syn-
chronization becomes zero in scale-free network with ��3.

In these studies, the mean-field approximation plays an
essential role. For the mean-field approximation, we consider
a model in which a node i couples to another node j with a
strength proportional to “mean coupling probability”
kikj /ktot, where ki and ktot are the degree of node i and total
number of edges, respectively. The dynamics in complex net-
work is much simplified by this approximation, and we can
obtain analytical results. However, this model differs from
the original network model, in which each node couples to a
finite number of nodes. It is remarkable that the mean-field
approximation is in good agreement with the numerical
simulation result of a random network model.

One of the objectives of this paper is to provide a sound
explanation for the mean-field approximation. It is unclear
why the mean-field approximation performs well in the ran-
dom network model. The validity of the mean-field approxi-
mation, particularly with regard to the Kuramoto transition,
is debatable. Moreno, Pacheco, and Vazquez-Prada carried
out numerical simulations on the Kuramoto transition in the
Barabási-Albert network �8,9�. They concluded that the criti-
cal coupling Kc is not 0 even if N→�. Their conclusion
seems to contradict the result of mean-field theory Kc=0,
though this discrepancy is possibly due to the difference of
the order parameter used in these papers. Restrepo, Hunt, and
Ott suggested that the the argument based on the largest ei-
genvalue of the network matrix is superior to that based on
the mean-field theory �10�. They demonstrated that the
mean-field approximation is valid for the Erdös-Rényi net-
works and random scale-free networks with �=3, while this
approximation does not hold in the case of scale-free net-
works with �=2. However, they did not provide any expla-
nation as to why the mean-field theory works well in some
random network models. An appropriate explanation to this
question is a matter of great interest and significance.

The second objective of this study is to extend the mean-
field theory. Although the mean-field theory displays good
qualitative coincidence with numerical simulations, it is im-
possible to examine the fluctuation of the variables by the
mean-field approximation. Moereover, as noticed, we cannot
apply the mean-field approximation in some network mod-
els. Therefore it is meaningful to make an approximation that
covers a wider range of complex networks. In this paper, we
demonstrate that the distribution of variables in the sparse
random network model can be approximated by that ob-
tained from a globally coupled network, in which the distri-
bution of the interaction between the nodes is given by a
Gaussian random number. This result indicates that the dy-
namics in random network can be approximated more pre-
cisely by appropriate methods such as dynamical mean-field
theory �11�.

In order to realize the above-mentioned objectives, we
utilize the path-integral approach. The path integral, which
was originally developed for application in quantum me-
chanics �12�, has also been applied to random impurity prob-
lems �13,14�, random spin glasses �15–17�, neural networks
�18,19�, and oscillator systems �20�. One of the advantages*Electronic address: miya@aurora.es.hokudai.ac.jp
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of this approach is that the average over an ensemble of
networks can be calculated easily. Limitations of the path-
integral include an infinite number of integrals and obtaining
a precise average over the ensemble, which is not usually
possible. However, this method enables approximation of the
distribution of the variables in a systematic manner. In par-
ticular, the mean-field approximation can be derived as the
lowest order approximation of the path integral. The methods
used by us are similar to that used by Theumann for the
Hopfield network model �22�.

The outline of this paper is as follows. In Sec. II, we
present the general description of the dynamics of a network
model based on the path-integral approach. We derive a for-
mula that is general and can be applied to any network model
in this section. In Sec. III we present two approximations of
the path-integral formula, mean-field approximation, and
perturbation. We also prove that the dynamics of a random
network is essentially identical to that of a random Gaussian
network. In Sec. IV, we apply the analysis to the Kuramoto
transition in a random sparse network. We present the results
of numerical simulation, which are consistent with that ob-
tained from the analysis. To conclude, we discuss our ob-
tained results.

II. PATH-INTEGRAL APPROACH TO THE DYNAMICS
OF A NETWORK MODEL

In this section, we introduce the formalism to study the
dynamics of a network model using the path-integral ap-
proach. We consider the following differential equations for
the network model:

ẋi = f i�xi� + �
j=1

N

ai,jg�xi,xj� + �i�t� , �1�

where �i�t� is a random force that satisfies ��i�t�=0�,
��i�t�� j�t���=�i,j��t− t���2. We assume xi=xi,0 at t=0. In or-
der to discuss the dynamics of this system, it is useful to
introduce Matrin-Siggia-Rose �MSR� generating functional
Z, which is defined as �13,14�

Z��li,k	,�l̄i,k	� = 
 1

�
�NNt� �

i=1

N

�
k=0

Nt

dxi,kdx̄i,ke
−S

	exp�li,kxi,k + l̄i,kx̄i,k�J� , �2�

where the action S is given by

S = �
i,k

�2
t

2
x̄i,k

2 + ix̄i,k�xi,k − xi,k−1 − 
t� f i�xi,k−1�

+ �
j

ai,jg�xi,k−1,xj,k−1���� , �3�

and �¯� represents the average over the ensemble of net-
works. J is the functional Jacobian term,

J = exp
−

t

2 �
i,j,k

��f i�xi,k� + ai,jg�xi,k,xj,k��
�xi,k

� . �4�

Though this term is necessary for the renormalization Z�0�
=1, it is a little cumbersome to treat it in a practical calcu-
lation, such as the mean-field approximation or a perturba-
tion. Here we note that, as De Dominicis showed �14�, the
only effect of this Jacobian term is to subtract the nonre-
tarded correlation function �x̄i,kxj,k+k��, where k��1. In the
following discussion, we omit this Jacobian term, remember-
ing that we only consider the retarded correlation function.
Maintaining 
tNt constant at the limit 
t→0, we obtain the
MSR generating functional.

We consider the network described by

ai,j = �1 with probability pi,j ,

0 with probability 1 − pi,j .
� �5�

We note that pi,j can be a function of variables such as i or j.
For example, in the one-dimensional chain model, pi,j is 1 if
�i− j�=1, otherwise it is 0. The average over all networks can
be expressed as

�exp��
i,k

i
tx̄i,k�
j

ai,jg�xi,k−1,xj,k−1���
= �

i,j
�pi,j exp��

k

i
tx̄i,kg�xi,k−1,xj,k−1�� + 1 − pi,j� ,

�6�

and we obtain

�e−S� = exp�− S0��
i,j
�pi,j exp��

k

i
tx̄i,kg�xi,k−1,xj,k−1��
+ 1 − pi,j� , �7�

where

S0 = �
i,k

�2
t

2
x̄i,k

2 + ix̄i,k�xi,k − xi,k−1 − 
tf i�xi,k−1�	 . �8�

The above-mentioned expression is a general one and can be
applied to the dynamics of any network model. However, it
is often impossible to calculate the precise value of �e−S�,
particularly in the case of nonlinear dynamics. We need an
approximation to obtain the value of �e−S�. In the next sec-
tion, we approximate Eq. �6� by assuming pi,k�1 and
pi,jpk,l� pi,j for any i, j, k, and l.

III. APPROXIMATION OF THE MSR GENERATING
FUNCTIONAL IN A SPARSE RANDOM NETWORK

MODEL

In this section, we develop an approximation for the MSR
generating functional Z in a sparse random network. For this,
we assume pi,j �1 and pi,jpk,l� pi,j for any i, j, k, and l. In
the case of the Erdös-Rényi model, pi,j is independent of i
and j; pi,j = �k� /N. Therefore this assumption is valid for a
sparse Erdös-Rényi model, because pi,jpk,l= �k�2 /N2� pi,j. In
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the case of a random network with distribution P�k�, we
construct the network as follows. First, we define the “de-
gee” of node i as ki�, whose distribution concides with P�k�.
Second, we connect the nodes i and j with probability pi,j
=ki�kj� /�iki�. Using this procedure, we obtain the random net-
work whose degree distribution is approximately given by
P�k�. In this case, if the maximum degree of a node kmax is
much smaller than N, kmax�N, the assumption is satisfied.
On the other hand, this assumption is not satisfied in the
Watts-Strogatz model, because pi,i+1�1.

Since pi,j �1, the approximate value of the logarithm of
the right-hand side of Eq. �6� is expressed as follows:

ln
�
i,j
�pi,j exp��

k

i
tx̄i,kg�xi,k−1,xj,k−1�� + 1 − pi,j��
� �

i,j
− pi,j + pi,j exp��

k

i
tx̄i,kg�xi,k−1,xj,k−1��
= �

i,j
pi,j�

l=1

�
1

l!
�k

i
tx̄i,kg�xi,k−1,xj,k−1��l
. �9�

Therefore, we obtain

�e−S� � exp��
i,k
�− �2
t

2
x̄i,k

2 − ix̄i,k�xi,k − xi,k−1

− 
tf i�xi,k−1�	��
	 exp��

i,j
pi,j�

l=1

�
1

l!
�k

i
tx̄i,kg�xi,k−1,xj,k−1��l� .

�10�

To calculate Z from this equation, we need an infinite num-
ber of integrals, and we cannot carry out this integration
practically. However, this formula gives us much information
about the averaged dynamics of networks. In the following
subsections, we consider two simple approximation schemes,
the mean-field approximation and perturbation.

A. Mean-field approximation and beyond

To begin with, we consider an approximation that ignores
the l�2 part of Eq. �10� and obtain

�e−S� � exp
�
i,k
�−

�2
t

2
x̄i,k

2 − ix̄i,k�xi,k − xi,k−1 − 
t�f i�xi,k−1�

+ �
j

pi,jg�xi,k−1,xj,k−1����� . �11�

This result demonstrates that the MSR generating func-
tional for Eq. �1� can be approximated as that for the system
described by

ẋi = f i�xi� + �
j

N

pi,jg�xi,xj� + �i�t� . �12�

This equation implies that the mean-field approximation ne-
glects the contribution of the term l�2 in Eq. �10�. The

mean-field approximation method is based on two assump-
tions. First, the higher-order term in pi,j in Eq. �9� is ne-
glected, and, second, the higher-order term in Eq. �10� is
neglected. The former assumption is valid if pi,j �1 for all
values of i and j. However, neglecting the higher-order term
is not always valid. In order to examine this argument, we
study the effect of the term l=2. From the Stratonovich-
Hubbard transformation, we obtain the following:

exp�pi,j
1

2
�k

i
tx̄i,kg�xi,k−1,xj,k−1��2�
=� 1

2�pi,j
 dri,j exp�−

ri,j
2

2pi,j

+ i
ri,j�
k


tx̄i,kg�xi,k−1,xj,k−1��� . �13�

By comparing Eqs. �11�–�13�, we observe that the MSR gen-
erating functional is identical to that of the system described
by

ẋi = f i�xi� + �
j

N

�pi,j + ri,j�g�xi,xj� + �i�t� , �14�

where ri,j is a random number and its distribution is given by
a Gaussian distribution, with a mean value of 0 and a disper-
sion �ri,j

2 �= pi,j.
Sequential application of the Stratonovich-Hubbard trans-

formation yields the contribution from the term l=2n. For
example, if we consider the term l=4, then because

exp�pi,j
1

4!
�k

i
tx̄i,kg�xi,k−1,xj,k−1��4�
=� 3

2�pi,j
 dri,j� exp�−

3ri,j�2

2pi,j

+
ri,j�

2 
�
k

i
tx̄i,kg�xi,k−1,xj,k−1��2� , �15�

the Gaussian fluctuation with dispersion �pi,j /3 is added to
pi,j in Eq. �13�. Therefore, �P� is given by the solution of

ẋi = f i�xi� + �
j

N

�pi,j + ri,j�g�xi,xj� + �i�t� , �16�

where the distribution of ri,j is given by a Gaussian with
dispersion �r=�pi,j +ri,j� , and the distribution of ri,j� is also
Gaussian with dispersion �r�=�pi,j /3. By sequential applica-
tion of this transformation, we can obtain the effect of the
term l=2n. However, as these correction terms are small for
large l, the Gaussian random network is a good approxima-
tion of the random sparse network.

The estimation that utilizes the Stratonovich-Hubbard
transformation is very effective in mapping the dynamics of
the sparse network ensemble onto the dynamics of globally
coupled networks. This method is very useful, especially in
the case where the dynamics of Gaussian random networks is
well known. However, the effectiveness of this transforma-
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tion is limited, because it can only consider the terms l=2n.
This method does not elaborate on the effect of the terms l
=3,5 ,6 , . . .. In the next subsection we realize that the correc-
tion in Z resulting from the term l=2m+1 is of the order pi,j

2

in the random network.

B. Perturbation

As shown in the preceding section, though the mean-field
approximation and the Stratonovich-Hubbard transformation
are very effective methods, they only consider a limited
number of terms. To examine the effect of other tems, we use
the perturbation technique for a network model in this sec-
tion. The perturbation gives a formal estimate of the value of
�e−S�. Furthermore, we note that this method is highly effec-
tive because it allows us to estimate the accuracy of the
approximation by an order of pi,j. However, this method has
two drawbacks. First, it is typically impossible to obtain the
value of �e−S� in nonlinear physics. It is often difficult to
obtain the value of �e−S� even if there is no interaction, and
the perturbation can therefore only be applied to limited sys-
tems. Second, bifurcation or phase transition cannot be ob-
tained without including the infinite order of perturbation in
pi,j. In general, the MSR generating functional Z becomes
singular at the bifurcation point. However, the finite-order
perturbation yields Z, which is a nonsingular function of pi,j.
Therefore, it is impossible to examine a phase transition by
perturbation. However, perturbation often yields important
information. In this section, we demonstrate that the correc-
tion from the odd l term is of the order pi,j

2 .
We begin with Eq. �10�. On expanding exp��pi,j¯ �, we

obtain

�e−S� = exp��
i,k
�−

�2
t

2
x̄i,k

2 − ix̄i,k�xi,k − xi,k−1

− 
tf i�xi,k−1�	��
	 �

m=0

�
1

m!��
i,j

pi,j�
l=1

�
1

l!
�k

i
tx̄i,kg�xi,k−1,xj,k−1��l�m

.

�17�

We first consider the correction from the term l=3. Since the
effect of the term l=2 can be expressed as the fluctuation in
pi,j, we consider

e−S � exp
�
i,k
�−

�2
t

2
x̄i,k

2 − ix̄i,k�xi,k − xi,k−1 − 
t�f i�xi,k−1�

+ �
j

pi,j� g�xi,k−1,xj,k−1����
+ �

i,j

pi,j

3! 
�k

i
tx̄i,kg�xi,k−1,xj,k−1��3� �18�

To account for the effect of the term l=3, we treat this term
using perturbation. We expand the term l=3 as

exp��
i,j

pi,j

3! 
�k

i
tx̄i,kg�xi,k−1,xj,k��3�
= 1 + �

i,j

pi,j

3! 
�k

i
tx̄i,kg�xi,k−1,xj,k−1��3

+
1

2��
i,j

pi,j

3! 
�k

i
tx̄i,kg�xi,k−1,xj,k−1��3�2

+ ¯ .

�19�

Here we assume pi,jpk,l� pi,j for any value of i, j, k, and l
again.

Based on this assumption, �e−S� can be approximated as

�e−S� = �1 + �
i,j

pi,j

3! 
�k

i
tx̄i,kg�xi,k−1,xj,k−1��3�e−S1,

�20�

where

S1 = �
i,k
��2
t

2
x̄i,k

2 + ix̄i,k�xi,k − xi,k−1 − 
t
 f i�xi,k−1�

+ �
j

pi,j� g�xi,k−1,xj,k−1���� . �21�

To calculate the contributions to Z from these terms, it is
convenient to define

P��i,k	� = 
 1

�
�NNt/2 �

i,k
dx̄i,k exp
�

i,k
�−

�2
t

2
x̄i,k

2

− ix̄i,k�xi,k − xi,k−1 − 
t
 f i�xi,k−1�

+ �
j

pi,j� g�xi,k−1,xj,k−1� − i,k���� . �22�

Since

 �
i,k

dx̄i,k�− i
t�3x̄i1,k1
x̄i1,k2

x̄i1,k3
e−S1

=
�3

�i1,k1
�i1,k2

�i1,k3

�P��i,k	��i,k→0, �23�

the MSR generating functional Z can be calculated from Eq.
�20� if the differential of P is known. We first consider the
differential of P in the case where k1 ,k2, and k3 are distinct.
On integrating Eq. �22�, we obtain

P��i,k	� = C exp�− �
i,k

1

2�2
t�xi,k − xi,k−1 − 
t
 f i�xi,k−1�

+ �
j

pi,j� g�xi,k−1,xj,k−1� − i,k��2� , �24�

where C= �1/�2
t�NNt/2. We note that the integration of
P��i,k	� over xi,k is O�1�, while P��i,k	� is O(�
t�3/2). On
differentiating Eq. �24� with respect to i1,k1

, we obtain
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� �P��i,k	�
�i1,k1

�
=0

=
C

�2�xi1,k1
− xi1,k1−1 − 
t
 f i1

�xi1,k1−1�

+ �
j

pi1,j� g�xi1,k1−1,xj,k1−1���e−S1�, �25�

where

S1� = �
i,k

1

2�2
t�xi,k − xi,k−1 − 
t
 f i�xi,k−1�

+ �
j

pi,j� g�xi,k−1,xj,k−1���2
. �26�

On differentiating Eq. �25� with respect to i1,k2
and i1,k3

we
obtain �3P /�i1,k1

�i1,k2
�i1,k3

. However, we temporarily con-
sider the term �P /�i,k, because further differentiations with
respect to i2,k2

and i3,k3
do not modify the following discus-

sion.
In the limit 
t→0, exp�−S1�� approaches to the � function

�(xi,k−xi,k−1−
t�f i�xi,k−1�+� jpi,j� g�xi,k−1 ,xj,k−1��). Therefore,
in the limit 
t→0, Eq. �25� always attains the value 0. How-
ever, 
tNt is maintained constant when the limit 
t→0 is
taken. Therefore, the sum of the integrals of �P /�i,k over xi,k
may have a finite value at the limit 
t→0, if Eq. �25� has a
magnitude O�
t�. In order to obtain a more accurate estimate
of Eq. �25�, we express S1� as

S1� = �
i,k

1

2�2
t�xi,k − xi,k−1 − 
t
 f i�xi,k−1�

+ �
j

pi,j� g�xi,k−1,xj,k−1���2
+

1

�2
 f i�xi,k�

+ �
j

pi,j� g�xi,k,xj,k���xi,k+1 − xi,k� + O�
t�

+ �the terms that do not include xi,k� . �27�

We consider the integral �dxi,kh�xi,k��P /�i,k, where h�xi,k� is
an arbitrary nonsingular function. Since the value of h�xi,k�
	�xi,k−xi,k−1−
t�f i�xi,k−1�+ pi,j� g�xi,k−1 ,xj,k−1�	� is 0 at xi,k

=xi,k−1+
t�f i�xi,k−1�+ pi,j� g�xi,k−1 ,xj,k−1��, we introduce yi,k

=xi,k−xi,k−1−
t�f i�xi,k−1�+ pi,j� g�xi,k−1 ,xj,k−1�	, and expand us-
ing the Taylor expansion.

h�xi,k�exp� 1

�2
 f i�xi,k� + �
j

pi,j� g�xi,k,xj,k���xi,k+1 − xi,k�

+ O�
t� + ¯ � = �
m=1

�

hmyi,k
m . �28�

Therefore, we obtain

�  dxi,kh�xi,k�
�P

�i,k
�

=0

= C dyi,k�
m

hmyi,k
m exp�− yi,k

2 /2�2
t�

= C dyi,k� �
m

�2�2
t��m+1�/2hmyi,k�
m exp�− yi,k�

2� .

�29�

Since the value of this integral becomes 0 if m is odd, the
leading order of this integral is obtained from the term m
=2, and has a magnitude of O�
t3/2�. Since the magnitude of
this contribution is smaller than O�
t�, we can neglect this
term at the limit 
t→0.

Therefore, if k1, k2, and k3 are unequal, then the value of
the integral of the second term in Eq. �20� becomes 0. In the
case where k1=k2=k3, �3P�� /�3 is negligible as 
t→0
from a similar argument. In general, the contribution from
the term �mP�� /�m is negligible for odd m, because it is

expressed in the form e−S1��xi,k−xi,k−1−
t�f i�xi,k−1�
+� jpi,j� g�xi,k−1 ,xj,k−1��		 �nonsingular function�.

Similarly, we can prove that ��m / ��i1,k1
¯�im,km

��P is
nonzero if and only if each i,k appears 2n times in the de-
limiter. From these results, we conclude that the contribution
of the term l=3 to Z is of the order pi,j

2 . In addition, we
conclude that the contribution from the term l=2m+1 is of
the order pi,j

2 . The contribution from the term l=2m�2m�+1�
is also estimated by the Stratonovich-Hubbard transforma-
tion. In the case of the random network model, the correction
due to these terms is small. For example, the contribution
from the term l=6 to the MSR generating functional term is
estimated using

exp�pi,j
1

6!
�k

i
tx̄i,kg�xi,k−1,xj,k−1��6�
=� 180

�pi,j
 dri,j exp�−

ri,j
2

pi,j

+ iri,j
�
k

i
tx̄i,kg�xi,k−1,xj,k−1��3� . �30�

The dispersion of ri,j is �pi,j /90 and the contribution of this
term is much smaller compared to that from the Gaussian
fluctuation obtained from the term l=2.

From the discussion based on the Stratonovich-Hubbard
transformation and perturbation, we demonstrated that the
MSR generating functional for the dynamics of a random
sparse network model is almost identical to that for the dy-
namics of a random Gaussian network. In the next section,
we demonstrate that the above analysis is consistent with the
result of a numerical simulation of the Kuramoto transition
in a network model.
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IV. EXAMPLE: THE KURAMOTO TRANSITION

In the previous section, we developed a general scheme to
approximate the dynamics of the random sparse network and
found its dynamics can be described by

ẋi = f i�xi� + �
j

N

�pi,j + ri,j�g�xi,xj� + �i�t� �31�

when pi,j �1. In this case, the distribution of ri,j is provided
by a Gaussian with dispersion �=�pi,j. In this section, we
apply this approximation to the dynamics of oscillators in
random networks.

We consider a random network of oscillators

d�i/dt = �i + K�
j

ai,j sin�� j − �i� �32�

where �i and �i represent the phase and velocity of the os-
cillator i, respectively. The value of ai,j is 1 if nodes i and j
are connected, otherwise it is 0. We note that the random
Gaussian matrix needs to be considered as symmetric. We
consider the case where the distribution of �i is given by
g���= �1/�2����exp���−�0�2 /2��

2 �, and ai,j represents a
random network with mean degree k0. The above discussion
suggests that the dynamics of this network can be approxi-
mated using the following equation:

d�i/dt = �i + �
j

 k0

N
+ ri,j�K sin�� j − �i� , �33�

where the distribution of ri,j is given by P�ri,j�
=�N /2�k0exp�−Nri,j

2 / �2k0��. This model is similar to the dy-
namic glass model proposed by Daido �21�. However, the
mean interaction between oscillators is positive in our model,
while it is 0 in Daido’s model.

It is difficult to calculate analytically the dynamics of this
globally coupled model. In this section, we present the nu-
merical results for the random sparse and random Gaussian
networks. For this simulation, we set N=1000, 2��

2 =1.0,
�0=0, and k0=10. The result obtained is averaged over 50
different networks.

First we examine the coupling dependence of the order
parameter r. In our previous paper, we defined the order
parameter r as r=�ikie

i�i /�ki for a random sparse network
model. However, it is difficult to define such an order param-
eter for a random Gaussian model. In this paper, we therefore
use �ei�� as the order parameter for a random Gaussian net-
work, and r=�ikie

i�i /�ki for a random sparse network
model. Although these two order parameters are distinct, the
difference between them is small, because the distribution of
degree has a strong peak at k=k0 for a random sparse net-
work. The values of r are plotted in Fig. 1 for both the
networks for the range K=0.02–0.20. In both these models,
the order parameter remains almost constant for K values
less than 0.1. There is a rapid increase in r for K values
greater than 0.1. The values of r coincide qualitatively for
these two models. When K=Kc, a sharp transition, given by
r��K−Kc, is observed in the mean-field approximation.

This sharp transition gets smeared out in a random sparse
network. The Gaussian model approximates this smearing
well.

The order parameters being identical is not unusual, be-
cause their obtained values were close to those obtained us-
ing the mean-field theory. We now explain the distribution of
velocity d�i /dt. In the mean-field approximation, d� /dt has a
�-function-like peak at d� /dt=0. However, if the coupling
between the oscillators is random, the strong peak at d� /dt
will get smeared. In Fig. 2, the distribution of d� /dt for
sparse random and random Gaussian networks is plotted. At
K=0.02, there is an absence of synchronization and the dis-
tribution of d� /dt is Gaussian-like. On the other hand, the
oscillators are well synchronized and the distribution has a
strong peak at d� /dt=0 when K=0.16. For the present study,
we focus on the distribution at K=0.10. This value of K is
close to the critical point, and we suggest that the large fluc-
tuation appears at this point. In the case of sparse networks,
the peak at d� /dt=0 is sharper at k=0.10 than at k=0.02.
The same tendency is observed in the case of a Gaussian
network. For example, we observe that P�−0.1�d� /dt
�0.1�=0.137 for a sparse random network. This value is
close to P�−0.1�d� /dt�0.1�=0.131 obtained from a ran-
dom Gaussian network. This consistency in the observed
value suggests that a random sparse network can be approxi-
mated by a Gaussian random network.

Finally, we present the distribution of the phase � for both
networks. The phase distribution in the �� ,�� plane at K
=0.16 is shown in Fig. 3. Although the coupling strength is
sufficiently large for synchronization, the phase does not en-
tirely lie on a single line obtaind from the mean-field ap-
proximation method, �=arcsin�� /Kk0r�. In order to observe
the dispersion around the mean-field line, we present the
phase distribution of oscillators with ����0.05 in Fig. 4. In
this region, �arcsin�� /Kk0r�� is less than 0.05 and the � de-
pendence of the phase distribution can be neglected. In both
the models, the phase distribution lies in a wide range of �.
The dispersion � for these two figures is �2=0.105 and
0.122 for the random sparse and the random Gaussian net-
work, respectively. Since these two values coincide qualita-
tively, the random Gaussian network is a good approxima-
tion of the random sparse network.

FIG. 1. The coupling dependence of the order parameter for
random sparse and random Gaussian networks.
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V. CONCLUSION AND DISCUSSION

In this paper, we studied the dynamics of a random net-
work model using the path-integral approach. We identified
that the mean-field approximation is the lowest-order ap-
proximation of pi,j and l=1, as shown in Eq. �11�. We also
demonstrated that the contribution of the term l=2n can be
described by the fluctuation of coupling in the globally
coupled approximation method. The contribution of the odd l
terms is difficult to estimate, though it is of the order pi,j

2 . We
applied these general results to the Kuramoto transition, and
observed a good agreement with numerical simulations.

The path-integral approach developed through this study
is a general one and is applicable to dynamics of any random

network. In particular, if the precise result for a randomly
coupled model is known, a good approximation can be ob-
tained for random sparse network models. There are several
models, such as the replicator model �23,24�, for which the
exact results are known for a Gaussian random network. Our
analysis proves that the dynamics of random sparse networks
can be easily obtained for such models.

The analysis presented in this study is limited to the dy-
namics in a random network model. In the case of another
network model, we need to include the higher-order terms to
evaluate the MSR generating functional. It is usually difficult
to carry out such a calculation. However, our result provide
much information regarding the validity of the mean-field
approximation. For example, the mean-field approximation

FIG. 2. The distribution of d� /dt at K=0.02, 0.10, and 0.16 for a random sparse network �upper� and a random Gaussian network
�lower�.
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is applicable if pi,jpk,l� pi,j �1. On the other hand, such an
approximation is not applicable to the dynamics of a highly
clustered network. In such a network, pi,jpj,kpk,i�O�pi,jpj,k�,
pi,jpk,l� pi,j cannot be assumed and the contribution from the
neglected terms needs to be calculated. It is usually believed
that the dynamics of networks with high clustering coeffi-
cients cannot be approximated using the mean-field approxi-
mation method because of the high clustering coefficient.
However, our analysis reveals that the validity of the mean-
field approximation methods depends on the value of pi,jpk,l
and pi,j. For example, the mean-field approximation method
cannot be applied to the square-lattice model even if the
clustering coefficient is zero, because the value of pi,jpk,l can
be as large as that of pi,j.

We also discuss other studies conducted on the Kuramoto
transition in random network models. Restrepo et al. exam-
ined the mean-field theory and studied the Kuramoto transi-
tion �10�. They concluded that synchronization occurs when
K satisfies the relation K�2/�g�0��, where � is the largest
eigenvalue of the network matrix ai,j and g�0� is the density
of the oscillators at �=0. They stated that the mean-field
approximation, which was developed by us in previous pa-
pers, functions only when ri�ki, where ri is the local field
defined as ri= �� jai,je

i��i−�j��t, where �¯�t means the average
over a long time interval. However, they did not explain the
reason why this assumption is valid in some random network
models, though they stated that there exists some relationship
between the eigenvectors of ai,j and degree of each node. In

this paper, we demonstrated that the mean-field theory is an
approximation that considers only the term l=1 in the MSR
generating functional. In this case, the mean-field approxi-
mation coincides with the discussion obtained from the larg-
est eigenvalues, because the largest eigenvalue of the matrix
pi,j =xixj is �ixi

2 and its eigenvector v is given by v
= �x1 ,x2 , . . . ,xn�. In the random network model, pi,j

=kikj /N�k�, where ki and kj are the degrees of the nodes i and
j. Therefore, the largest eigenvalue of this matrix is �k2� / �k�,
and the critical condition for synchronization in the mean-
field approximation becomes identical to that in the discus-
sion based on eigenvalues. In order to examine the applica-
bility of the mean-field approximation, the term l=2 should
be considered. In the case of a random matrix, the largest
eigenvalue with a dispersion p is expressed by 2�Np
=2��k� based on Wigner’s semicircle law �24�. This result
suggests that the mean-field approximation can be applied
if ��k�� �k2� / �k�. In order to examine this, we consider the
matrix M +G, where M is the matrix obtained from the
mean-field approximation and G the Gaussian random ma-
trix, i.e., the distribution of each element of the matrix is
Gaussian with dispersion �k. As observed earlier, the largest
eigenvector v of matrix M satisfies the condition Mv=�v,
where �= �k2� / �k�. On the other hand, �Gv� is of the order
�2k�v�, because all eigenvalues of G lie between −�2k and
�2k. Therefore, ��M +G�v� equals approximately ��v� based
on the assumption that ���k, and the direction of �M
+G�v is approximately identical to v. It should be noted that

FIG. 3. Phase distribution in sparse and Gaussian random net-
works at K=0.16.

FIG. 4. Phase distribution in random sparse and random Gauss-
ian networks at K=0.16.
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all vectors u that are perpendicular to v, i.e., �u ,v�=0, satisfy
the condition Mu=0. This implies that ��M +G�u���2k�u�
���u�. Therefore, the largest eigenvalue and corresponding
eigenvector of M +G can be approximated as �k2� / �k� and
v= �k1 , . . . ,kn�, respectively. Therefore, the mean-field ap-
proximation is a suitable approximation if �k� is sufficiently
large. In the case of a scale-free network, the spectrum den-
sity differs from that suggested by Wigner’s law and the
above-mentioned conclusion should be modified. However,
this discussion suggests that the validity of the mean-field
approximation is determined by the largest eigenvalues of
the mean-field matrix M and random matrix G. If the largest

eigenvalue of matrix G is as large as �, the mean-field ap-
proximation is not valid. Based on the idea presented in this
paper, the claim made by Restrepo et al. implies that the term
l=2 must be included in order to discuss the critical behavior
more accurately, especially in the case of a scale-free net-
work with �=2. Therefore, their work was not a denial of the
mean-field theory, but an extension of it.
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